GraphSense is a cryptoasset analytics platform emphasizing full data sovereignty, algorithmic transparency, and scalability. GraphSense is open-source and free. It provides a dashboard for interactive investigations and, more importantly, complete data control for automatizing cryptoasset analytics workflows.
GraphSense originated in 2015 as a publicly funded research project at the Austrian Institute of Technology (AIT), led by Bernhard Haslhofer as Principal Investigator. Since then, development has been carried out in collaboration with the Complexity Science Hub and has been supported by several public funding programs, including the Austrian FFG (IKT der Zukunft, KIRAS), and the EU Horizon 2020 program (TITANIUM).
In 2021, the core development team founded Iknaio Cryptoasset Analytics GmbH to provide GraphSense as a hosted service with near real-time data updates and to develop additional operational tools — such as Pathfinder, CaseConnect, and QuickLock — on top of the open-source platform.
GraphSense itself remains fully open-source and MIT-licensed. Iknaio is the commercial service and development partner; the two are complementary, not competing.
The GraphSense system design supports UTXO- (e.g., Bitcoin) and account-model (e.g., Ethereum, Tron) ledgers. Currently, adapters are available for major cryptocurrencies like Bitcoin, Bitcoin Cash, Litecoin, Zcash, Ethereum and Tron. Additional ledgers can be integrated by implementing a lightweight adapter component.
Haslhofer, B., Stütz, R., Romiti, M., & King, R. (2021). GraphSense: A general-purpose cryptoasset analytics platform. Arxiv pre-print. (pdf)
@article{Haslhofer:2021a,
title = {GraphSense: A General-Purpose Cryptoasset Analytics Platform},
author = {Bernhard Haslhofer and Rainer Stütz and Matteo Romiti and Ross King},
year = {2021},
journal = {Arxiv pre-print},
url = {https://arxiv.org/abs/2102.13613}
}
GraphSense has already supported several scientific studies:
Stütz, R., Stifter, N., Dragaschnig, M., Haslhofer, B., & Judmayer, A. (2026). Reuse of Public Keys Across UTXO and Account-Based Cryptocurrencies. arXiv preprint. (pdf)
Avice, R., Haslhofer, B., Li, Z., & Zhou, J. (2026). Linking cryptoasset attribution tags to knowledge graph entities: An LLM-based approach. Financial Cryptography and Data Security (FC 2026). (pdf)
Saggese, P., Segalla, E., Sigmund, M., Raunig, B., Zangerl, F., & Haslhofer, B. (2024). Assessing the solvency of virtual asset service providers: Are current standards sufficient? Applied Economics. (pdf)
Niedermayer, T., Saggese, P., & Haslhofer, B. (2024). Detecting financial bots on the Ethereum blockchain. Companion Proceedings of the ACM Web Conference 2024. (pdf)
Haslhofer, B., Hanslbauer, C., Fröwis, M., & Goger, T. (2023). Increasing the efficiency of cryptoasset investigations by connecting the cases. APWG Symposium on Electronic Crime Research (eCrime 2023). (pdf)
Stütz, R., Stockinger, J., Haslhofer, B., Moreno-Sanchez, P., & Maffei, M. (2022). Adoption and actual privacy of decentralized CoinJoin implementations in bitcoin. Proceedings of the 4th ACM Conference on Advances in Financial Technologies (AFT 2022). (pdf)
Kappos, G., Yousaf, H., Stütz, R., Rollet, S., Haslhofer, B., & Meiklejohn, S. (2022). How to peel a million: Validating and expanding bitcoin clusters. 31st USENIX security symposium (USENIX security 22). (pdf)
Romiti, M., Victor, F., Moreno-Sanchez, P., Nordholt, P., Haslhofer, B., & Maffei, M. (2021). Cross-layer deanonymization methods in the lightning protocol. Financial cryptography and data security (FC 2021). (pdf)
Stütz, R., Gaži, P., Haslhofer, B., & Illum, J. (2020). Stake shift in major cryptocurrencies: An empirical study. Financial cryptography and data security (FC 2020). (pdf)
Paquet-Clouston, M., Romiti, M., Haslhofer, B., & Charvat, T. (2019). Spams meet Cryptocurrencies: Sextortion in the Bitcoin Ecosystem. Advances in Financial Technologies (AFT 2019). (pdf)
Romiti, M., Judmayer, A., Zamyatin, A., & Haslhofer, B. (2019). A Deep Dive into Bitcoin Mining Pools: An Empirical Analysis of Mining Shares. Workshop on the Economics of Information Security (WEIS 2019). (pdf)
Paquet-Clouston, M., Haslhofer, B., & Dupont, B. (2019). Ransomware payments in the bitcoin ecosystem. Journal of Cybersecurity, 5(1). (pdf)
Filtz, E., Polleres, A., Karl, R., & Haslhofer, B. (2017). Evolution of the Bitcoin Address Graph - An Exploratory Longitudinal Study. International Data Science Conference (DSC 2017). (pdf)
Bernhard Haslhofer, Complexity Science Hub Vienna
Rainer Stütz, Complexity Science Hub Vienna
Matthias Rella, Iknaio Cryptoasset Analytics GmbH
Michael Fröwis, Iknaio Cryptoasset Analytics GmbH
Thomas Niedermayer, Iknaio Cryptoasset Analytics GmbH